netmon-multinode/MultiNode/MultiNode.ino

157 lines
4.6 KiB
C++

#include <ArduinoLowPower.h>
#include <SPI.h>
#include "MNLib.h"
//#define IS_CLIENT
//#define IS_SERVER
byte LoopState = 0;
char inByte;
unsigned long nextTick = 0;
unsigned int msTick = 2000;
// Class to manage message delivery and receipt, using the rfm95 declared above
//RHReliableDatagram rfManager(rfm95, CLIENT_ADDRESS);
// Internal on-chip Temperature sensor
TemperatureZero TempZero = TemperatureZero();
void setup()
{
SerialUSB.begin(115200);
//while (!SerialUSB);
/*for (int i = 0; i < 5; i++)
{
delay(1000);
SerialUSB.println("owo");
}*/
init_mn();
/*for (int i = 0; i < 2; i++)
{
delay(1000);
SerialUSB.println("awa");
}
printStatusReport();*/
nextTick = millis();
}
void loop()
{
if (SerialUSB.available())
{
size_t config_size = sizeof(MNConfiguration) - sizeof(configuration.client_secret_key) - sizeof(configuration.server_secret_key); // Don't leak the secret key
char command = SerialUSB.read();
switch (command)
{
case 'C': // Print configuration for in the field debugging
SerialUSB.println("Configuration:");
SerialUSB.print("Frequency: ");
SerialUSB.print(configuration.modem_frequency);
SerialUSB.println(" MHz");
SerialUSB.print("Power: ");
SerialUSB.print(configuration.modem_power);
SerialUSB.println(" dBm");
SerialUSB.print("Client address: ");
SerialUSB.println(configuration.client_address);
SerialUSB.print("Server address: ");
SerialUSB.println(configuration.server_address);
for (int i = 0; i < N_DEVICES; i++)
{
SerialUSB.print("Pointer ");
SerialUSB.print(i);
SerialUSB.print(": ");
SerialUSB.println(configuration.devices[i]);
if (configuration.devices[i] != 255)
{
for(int j = 0; j < sizeof(AnalogInput); j++)
{
SerialUSB.print(reinterpret_cast<uint8_t*>(devices[i])[j]);
SerialUSB.print(" ");
}
SerialUSB.println();
devices[i]->printStatus();
}
}
SerialUSB.println();
SerialUSB.print("Battery voltage: ");
SerialUSB.println(batteryVoltage());
SerialUSB.println();
SerialUSB.println(sizeof(uint16_t) + 1 * (sizeof(float) + sizeof(uint8_t) * 2));
SerialUSB.println(sizeof(uint16_t));
SerialUSB.println(1 * (sizeof(float) + sizeof(uint8_t) * 2));
SerialUSB.println("END");
break;
case 'c':
SerialUSB.print("N_DEVICES: ");
SerialUSB.println(N_DEVICES);
SerialUSB.print("CFGMEM: ");
SerialUSB.println(CFGMEM);
SerialUSB.print("MNConfiguration: ");
SerialUSB.println(sizeof(MNConfiguration) - sizeof(configuration.client_secret_key) - sizeof(configuration.server_secret_key));
SerialUSB.print("Device: ");
SerialUSB.println(sizeof(Device) - 4);
SerialUSB.print("AnalogInput: ");
SerialUSB.println(sizeof(AnalogInput) - 4);
SerialUSB.println("END");
break;
case 'r': // Read configuration (Frequency, which sensors etc.)
SerialUSB.write(reinterpret_cast<char*>(&configuration), config_size);
break;
case 'w':
SerialUSB.readBytes(reinterpret_cast<char*>(&configuration), config_size);
refreshConfig();
break;
case 'R': // Read configuration memory (extended configuration for each sensor)
SerialUSB.write(reinterpret_cast<char*>(&configuration_memory), sizeof(configuration_memory));
break;
case 'W':
SerialUSB.readBytes(reinterpret_cast<char*>(&configuration_memory), sizeof(configuration_memory));
refreshConfig();
break;
case 'k':
char data[sizeof(MNConfiguration)];
SerialUSB.readBytes(reinterpret_cast<char*>(&configuration) + config_size, sizeof(configuration.client_secret_key) + sizeof(configuration.server_secret_key));
SerialUSB.write(reinterpret_cast<char*>(&configuration) + config_size, sizeof(configuration.client_secret_key) + sizeof(configuration.server_secret_key));
refreshConfig();
break;
case 's':
saveMemory();
}
}
loopSensors();
// TICK-ROUTINE
if (millis() > nextTick)
{
sendSensorData();
SerialUSB.println("s");
uint8_t data[5];
data[0] = MT_DeviceStatus;
float bv = batteryVoltage();
memcpy(&data[1], &bv, 4);
send(data, 5);
nextTick = nextTick + msTick;
digitalWrite(LED_BUILTIN, HIGH);
delay(2);
digitalWrite(LED_BUILTIN, LOW);
}
}